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Abstract 

The most widely used approach to model the large strain 
elastic and the time-dependent response of polymers in a 
finite element simulation is the application of the so-called 
hyper-viscoelastic material model, which is composed of a 
nonlinear elastic (hyperelastic) and a linear viscoelastic part. 
In order to determine the constitutive parameters, a simple 
numerical algorithm has been used here. This method 
ensures a general strategy to fit the material parameters 
directly and accurately to the measurements. In this study, 
the material model and the numerical algorithm have been 
tested for silicone rubber and polypropylene. Finally, the 
numerical solutions have been compared with stress 
relaxation tests. 

Keywords: hyperelasticity, finite strain viscoelasticity, Prony-
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1 INTRODUCTION 
Polymers are widely applied materials, among others, in 

the automotive, the aerospace and the computer industry. 
They exhibit nonlinear stress-strain relation (Fig. 1 (a)) and 
time/rate dependent behaviour (Fig. 1 (b)) [1]. 

 
Fig. 1: Material behaviour of viscoelastic solids: (a) loading and 

unloading, (b) strain-rate dependency 

Fig. 1 (a) shows that energy dissipation (hysteresis) is 
appeared during loading-unloading and the strain-rate 
influences the overall mechanical response (Fig. 1 (b)). 
These properties are essential characteristics of viscoelastic 
materials. 

To model this complex mechanical behaviour, a so-
called large strain viscoelastic material model has to be 
used, which consists of a nonlinear elastic and a linear 
viscoelastic part. The former takes the time-independent, 
while the latter takes the time– and rate dependent 
behaviour into consideration [2]. At the same time, it is 

assumed that the material is linear in rheological sense. In 
this particular case, the constitutive equation can be split 
into a strain-dependent and a time-dependent part. 
Although this type of material model is frequently used, the 
determination of the model parameters is not a trivial task. 
This is proved, among others, by the fact that various 
approaches are available for the determination of the 
constitutive parameters in the literature. Here, the 
numerical algorithm proposed by Goh et al. [3] is used, 
where the convolution integral of the constitutive equation 
is integrated numerically based on the finite time 
increments and the material parameters are optimised in 
one step using measurement results. The method is applied 
for silicone rubber and polypropylene using tensile stress 
relaxation tests [4, 5]. Finally, the simulated and the 
measured stress relaxation behaviours are compared. 

 

2 MATERIAL MODEL 

2.1 Large strain elastic model 
The large strain time-independent behaviour of polymers 

can be modelled with hyperelastic material model, where 
the constitutive equations can be derived from the strain 
energy density function W. It is assumed that the material 
is isotropic, therefore W can be expressed with the principal 
invariants (I1, I2, I3) of the right Cauchy–Green deformation 
tensor C. In many cases, the material can be considered to 
be incompressible ( 13 =i ). In this study, two different 
hyperelastic models are used. The strain energy density 
functions of the models are as follows 

( )3110
NH -= ICW , (1) 

( ) ( ) ( )3130
2

120110
Y 333 -+-+-= ICICICW , (2) 

where NHW is the neo-Hookean [6], while YW is the 
Yeoh [7] hyperelastic potential, respectively.C10, C20, C30  
are material parameters, furthermore 
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2
2

2
11 tr lll ++== CI , (3) 

where λk ( 3,2,1=k ) denotes the principal stretches. 
The first Piola–Kirchhoff principal stresses (also known as 
engineering principal stresses) can be obtained as [8] 
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In case of uniaxial extension, the deformation gradient can 
be written as 
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where λ is the stretch ratio in the direction of load. It should 
be noted that the incompressible condition ( 1det == FJ ) 
was taken into account during the derivation of the 
deformation gradient F. As the strain energy density 
functions of the chosen hyperelastic models are given by 
Eqs. (1-2), the uniaxial stress responses can be derived 
using Eqs. (4-5). The engineering stress response of the 
neo-Hookean model becomes 

( )210
NH
1 2 --= llCP , (6) 

while the engineering stress-strain relation of the Yeoh 
model can be expressed as  

( ) ( ) ( )( )[ ] 43
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32
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   (7) 
It should be noted that, in case of time-dependent material 
behaviour, the strain is expressed as a function of time, thus 
the following notation is introduced 

( ) ( )( )tPtP l10 := . (8) 

2.2 Large strain viscoelastic model 
Since the deformation of the polymers is characterised 

by large strains and displacements, the hyper-viscoelastic 
material model has to be used, which takes into 
consideration both the large strain elastic (hyperelastic) and 
the viscoelastic behaviour of the material. It should be 
noted that the model used is linear in the sense that the 
dimensionless relaxation modulus is not a function of the 
strain, i.e. in rheological sense. Here the generalised 
Maxwell-model connected parallel to a nonlinear spring is 
used (see Fig. 2). 

 
Fig. 2: The material model used: generalised Maxwell-model connected 

parallel to a nonlinear spring 

The constitutive model consists of Maxwell-elements 
(linear spring and dashpot connected in series) connected 
in parallel which describes the time-dependent behaviour. 
Furthermore, it consists of a nonlinear spring, which gives 
the nonlinear long-term (relaxed) elastic modulus of the 
material. Gi denotes the i-th shear modulus, ηi is the i-th 

dynamic viscosity (i=1..N) while G∞ is the long-term 
(relaxed) shear modulus. 

The constitutive model consists of separable strain-
dependent function (σ0(ε)) and time-dependent function 
(g(t)) and can be written as 

( ) ( ) ( )tgt eses 0, = , (9) 

where σ0(ε) denotes the instantaneous Cauchy stress, which 
gives the instantaneous elastic (time-independent) response 
of the material. It can be derived from the hyperelastic 
potential (strain energy density function). The g(t) 
normalised function is strain-independent and represents 
the viscoelastic behaviour of the material. It can be 
expressed with the Prony-series as 
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where gi is the i-th relative, while g∞ is the long-term 
relative modulus, respectively. Furthermore, N denotes the 
order of the viscoelastic model and τi is the i-th relaxation 
time. These quantities are defined as follows 
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where G0 is the instantaneous (glassy) shear modulus. For 
the long-term and the relative relaxation moduli the 
following equation can be written 
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In general case, the viscoelastic stress response can be 
expressed in the form of convolution integral as 
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It can be split into long-term elastic and viscoelastic 
contribution as follows 
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The closed-form solution of Eq. (14) cannot be derived for 
arbitrary hyperelastic potential and strain-history. 
However, it is possible to compute the stress response 
numerically based on finite time increments. The detailed 
derivation of this method is provided by Goh et al. [3]. 

As the material parameters are fitted to the experimental 
data and the engineering stress can be obtained from the 
measurements directly, the incremental stress solution is 
derived using engineering stresses. At time instant tn+1 the 
engineering stress response may be written as 
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where P0(tn), P0(tn+1) values can be computed with the 
engineering stress solutions of the neo-Hookean and the 
Yeoh hyperelastic models (Eqs. (6-7)) and nn ttt -=D +1  

denotes the time increment. Since the initial stress-strain 
state is normally known ( 0== eP  at time 0=t ), the 
incremental stress response can be computed at time 0>t . 
It should be noted that Eq. (15) is only valid for uniaxial 
extension. 

Using Eq. (15), the hyperelastic and the viscoelastic 
constitutive parameters can be fitted simultaneously, 
directly to the measurement. The error is defined as 

å
=

-=
M

j
jj PP

1

compexpz , (16) 

where Pj
exp and Pj

comp are the experimental and the 
computed engineering stress values, respectively. The 
objective is to find the optimal material parameters through 
the minimisation of the error value given by Eq. (16). This 
minimisation problem is solved by using the ‘Solver’ 
routine of Microsoft Excel. 

 

3 RESULTS AND DISCUSSION 
In order to prove the applicability of the hyper-

viscoelastic material model and the accuracy of the 
parameter fitting method, already published uniaxial stress 
relaxation tests for silicone rubber and polypropylene are 
used. The details of these experiments are available in 
[4, 5]. The model parameters for both materials are 
determined using Eq. (15). 

The first step of the fitting method is to investigate that 
whether the material behaviour is linear in rheological 
sense or not. As it is mentioned in the former section, the 
most important character of a linear viscoelastic material is 
that the strain and time-dependent material behaviour are 
independent, i.e. σ0(ε) and g(t) are separable (see Eq. (9)). 
This behaviour of the material can be studied through the 
normalised relaxation curves. If these curves are coincident 
for all strains, the material can be modelled with the 
presented large strain viscoelastic material model [3, 9]. 
The normalised relaxation curves of the materials studied 
are presented in Fig. 3. 

 
Fig. 3: The normalised stress relaxation curves 

Fig. 3 shows that the normalised relaxation curves of the 
silicone are close to each other at different strain levels, 
therefore the material behaviour can be considered to be 
linear in rheological sense. However, in case of 
polypropylene, the nonlinear viscoelastic behaviour is 
appeared. 

The time-independent behaviour of the silicone and the 
polypropylene is modelled using the neo-Hookean and the 
Yeoh hyperelastic models, respectively. The time-
dependency is described with third-order viscoelastic 
model ( 3=N ) for both materials. The parameter fitting 
method is performed based on the stress relaxation curves 
using Eq. (15). The obtained material parameters are given 
in Table 1. 

Tabel 1: Material model parameters for silicone and polypropylene 

Material parameter Silicone rubber Polypropylene 

C10 [MPa] 0.153 544.26 
C20 [MPa] -0.0111 - 
C30 [MPa] 0.00324 - 

g1 [-] 0.0714 0.125 
τ1 [s] 7.64 5.85 
g2 [-] 0.0723 0.315 
τ2 [s] 240.8 5.84 
g3 [-] 0.01 0.098 
τ3 [s] 200 162.5 

It should be noted that the hyperelastic parameters (C10, C20, 
C30) are required to satisfy the Drucker stability condition. 
Furthermore, for the viscoelastic parameters (gi, τi), the 
following conditions have to be taken into account 

å
=

<
N

i
ig

1

1; 0>ig , 0>it  for all i. (16) 

Using the material model parameters given in Table 1, the 
finite element (FE) simulation of uniaxial stress relaxation 
tests has been performed using the commercial finite 
element software Abaqus [10]. The simulated engineering 
stress responses and their comparison with the experiments 
are shown in Figs. 4 and 5. 
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Fig. 4: The simulated and measured engineering stress-time curves for 

silicone rubber: (a) linear scale, (b) logarithmic scale 

 

 
Fig. 5: The simulated and measured engineering stress-time curves for 

polypropylene: (a) linear scale, (b) logarithmic scale 

As seen in Fig. 4, there is a good agreement between the 
simulated and the measured stress relaxation curves in case 
of silicone rubber. Therefore, the hyper-viscoelastic 

material model presented here is able to model the linear 
viscoelastic material behaviour accurately. In case of 
polypropylene (Fig. 5), however, the simulated and the 
measured curves differ considerably especially at 0.5 [%] 
and 1 [%] strain levels due to the fact that the polypropylene 
exhibits nonlinear viscoelastic behaviour (see Fig. 3). 
Consequently, the hyper-viscoelastic material model used 
here cannot describe the material behaviour with proper 
accuracy. 
 

4 CONCLUSIONS 
A simple numerical algorithm has been adopted in order 

to determine the constitutive parameters of silicone rubber 
and polypropylene from uniaxial relaxation tests. The 
results show that the large strain viscoelastic model used is 
able to model the material behaviour of silicone rubber with 
proper accuracy. However, in case of polypropylene, the 
simulated material behaviour differs from the measured one 
significantly. As it is pointed out the polypropylene exhibits 
nonlinear viscoelastic behaviour which is not taken into 
consideration in the material model used. 
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