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Abstract — This paper provides a thorough overview of 

biometric identification methods, including fingerprints, 

facial recognition, iris scans, voice patterns, and brainwaves. 

The unique features are examined of each type and their 

success rates, False Acceptance Rates (FAR), and False 

Rejection Rates (FRR) are compared to highlight their 

strengths and weaknesses. A novel method utilizing frontal 

beta brainwaves is also introduced for biometric 

identification with electroencephalography (EEG). This 

approach offers better security and reliability, potentially 

setting a new standard in biometric systems. Although not 

described in detail, its benefits are outlined, and future 

advancements are anticipated in brainwave-based 

biometrics. Our goal is to help the understanding and 

application of biometric systems, offering new insights and 

possibilities for secure and reliable identification methods. 

This work aims to push the boundaries of biometric research 

and pave the way for future innovations in secure 

identification. 

Keywords: brainwaves, biometric identification, beta 

brainwaves, EEG, FRR, FAR 

Összefoglalás — Ez a tudományos tanulmány átfogó 

áttekintést nyújt a biometrikus azonosítás különböző 

módszereiről, beleértve az ujjlenyomatot, arcfelismerést, 

íriszszkennert, hangmintázatokat és az agyhullámokat. 

Vizsgáljuk minden egyes típus egyedi jellemzőit, és 

összehasonlítjuk sikerességi arányukat, a téves elfogadási 

rátát (False Acceptance Rate, FAR) és a téves elutasítási rátát 

(False Rejection Rate, FRR), hogy kiemeljük erősségeiket és 

gyengeségeiket. Ezen felül bemutatunk egy új, 

elektroenkefalográfián (EEG) alapuló módszert, amely a 

frontális béta agyhullámokat használja biometrikus 

azonosításra. Ez a megközelítés nagyobb biztonságot és 

megbízhatóságot ígér, és potenciálisan új mércét állíthat fel a 

biometrikus rendszerek terén. Bár a módszer részletes 

technikai leírását ebben a cikkben nem fejlesztjük ki teljes 

részletességgel, vázoljuk előnyeit, és bizakodással tekintünk a 

jövőbeni fejlesztések felé az agyhullám-alapú biometria 

terén. Célunk a biometrikus rendszerek jobb megértésének 

és alkalmazásának elősegítése, új betekintéseket és 

lehetőségeket kínálva a biztonságos és megbízható 

azonosítási módszerek területén. Munkánk arra törekszik, 

hogy kitágítsa a biometriai kutatások határait, és 

megalapozza a jövőbeni innovációkat a biztonságos 

azonosításban. 

Kulcsszavak: agyhullámok, biometrikus azonosítás, béta 

agyhullámok, EEG, FRR, FAR 

 

1 INTRODUCTION 

 

The science of biometrics dates back several centuries 
but was accepted first as a scientific system used by the 
police to identify criminals in the 19th century, when 
Alphonse Bertillon developed a method for identifying 
criminals based on body measurements. This field 
advanced significantly in the 20th century with the 
introduction of fingerprint recognition, and has continued 
to evolve with technological advancements. Currently, 
biometric identification is a crucial component of security 
systems, providing a reliable and efficient means of 
verifying identity in various applications, ranging from law 
enforcement to personal device security. This paper 
investigates the theoretical foundations of biometric 
identification, comparing different types of biometric data 
and their effectiveness. 

Biometric identification is a method of recognizing 
individuals based on unique physical and behavioural 
characteristics. Such biometric data includes fingerprints, 
facial features, iris patterns, voice characteristics, and even 
brainwave patterns. Biometric identification is defined as 
the utilization of these unique traits to authenticate or 
identify individuals. 

 

2 BIOMETRIC IDENTIFICATION TYPES 

 

Biometric identification methods are essential tools for 
verifying individual identities by analysing unique physical 
and behavioural traits.  

2.1 Fingerprint Recognition  

Fingerprint recognition involves analysing the unique 
ridge and valley patterns found on an individual's fingertip. 
Each person's fingerprint is unique, making this method 
highly reliable for identity verification. The technology 
operates by capturing an image of the fingerprint, then 
processing, and comparing it to a stored template to verify 
identity. Despite its widespread use, fingerprint recognition 
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may be influenced by dermatological conditions or injuries.  
[1] 

2.2 Iris Recognition 

Iris recognition analyses the unique patterns in the 
coloured ring (iris) surrounding the pupil of the eye. The 
process involves capturing a detailed image of the iris, 
which is then converted into a digital template for 
comparison. Iris patterns are stable throughout a person's 
life, making this method highly reliable. However, it 
requires the subject to be relatively close to the camera, 
which can be a limitation in some scenarios. [2] 

2.3 Facial Recognition 

Facial recognition identifies individuals based on 
distinctive features of their faces, such as the distance 
between the eyes, nose shape, and jawline. Advanced 
algorithms analyse a captured image or video of a face and 
compare it to stored templates. While facial recognition is 
convenient and not intrusive, it can be affected by changes 
in appearance due to aging, makeup, or facial hair, and even 
varying lighting conditions. [3]  

2.4 Voice Recognition 

Voice recognition uses vocal traits for identity 
verification. Each person's voice has unique characteristics, 
such as pitch, tone, and cadence, which can be analysed and 
used for secure access to devices and services. The 
technology records a voice sample, extracts features, and 
matches them against a stored voiceprint. However, it can 
be influenced by background noise, or vocal changes 
caused by illness. [4] 

2.5 Retina Scanning 

Retina scanning examines the unique pattern of blood 
vessels at the back of the eye. This method requires close 
proximity to the scanning device, ensuring high accuracy. 
The process involves shining low-intensity light into the 
eye and capturing the reflection from the retina. While it is 
highly secure, retina scanning can be uncomfortable for 
users and requires heavily specialized equipment. [5] 

2.6 Hand Geometry Recognition 

Hand geometry recognition studies the shape and 
structure of an individual's hand, including the length and 
width of fingers and the contours of the palm. Hand 
geometry scanners capture an image of the hand and 
compare it to a stored template. [6] 

2.7 Vein Recognition 

Vein recognition maps the unique pattern of veins in a 
person's palm or finger. This method provides high security 
because vein patterns are difficult to replicate and are 
located beneath the skin's surface, making them less 
susceptible to external damage or alteration. The 
technology uses near-infrared light to capture an image of 
the veins, which is then processed and compared to stored 
templates. [7] 

2.8 Gait Recognition 

Gait recognition analyses an individual's walking 
pattern, which is unique and can be used for continuous 
identification and surveillance. This method captures and 
analyses the motion dynamics and rhythm of a person's gait 
through video footage or wearable sensors. However, it can 
be influenced by changes in walking conditions, such as 
injuries. [8] 

2.9 Ear Recognition 

Ear recognition focuses on the unique morphological 
features of an individual's ear. This method holds potential 
in various environments due to the distinctiveness of ear 
features and their stability over time. Ear recognition 
systems capture an image of the ear and compare it to stored 
templates. [9] 

2.10 DNA Matching 

DNA matching involves comparing genetic codes to 
verify identity, making it vital in forensic analysis and 
paternity tests. Each person's DNA is unique, except for 
identical twins, providing a definitive means of 
identification. DNA samples can be collected from 
biological samples containing blood, hair, skin cells, or 
other biological materials. While highly accurate, DNA 
matching is time-consuming and requires specialized 
laboratory equipment, making it unsuitable for real-time 
identification. [10] 

 

3 FAR AND  FRR BASED ANALYSIS 

 

3.1 FAR 

The False Acceptance Rate (FAR) is the probability that 
a biometric security system will incorrectly accept an 
unauthorized person as an authenticated user. It quantifies 
the likelihood of the system misidentifying an individual, 
allowing access to someone who should be denied. 
[11]Calculation of the FAR is presented in equation (1). 

 

𝐹𝐴𝑅 =
𝑁𝑓𝑝

𝑁𝑓𝑝 + 𝑁𝑡𝑛
100%   (1), 

 

where Nfp denotes the number of false positives, and Ntn 
represents the  

number of true negatives. 

3.2 FRR 

The False Rejection Rate (FRR) is the probability that a 
biometric security system incorrectly rejects an authorized 
person. It measures the likelihood of the system failing to 
recognize a legitimate user, denying them access. 
Calculation of the FRR is determined as shown in equation 
(2) [11]: 

 

 

𝐹𝑅𝑅 =
𝑁𝑓𝑛

𝑁𝑓𝑛 + 𝑁𝑡𝑝
100%,    (2) 

 

where Nfn denotes the number of false negatives, and Ntp 
corresponds tonumber of true positives. 

 

3.3 Overall Error 

By summing the FAR and FRR values upand dividing 
the resultant value by the total number of accesses, one may 
calculate the overall error rate (3). [11] 

 

𝐸𝑟𝑟𝑜𝑟 = 𝐹𝐴𝑅 + 𝐹𝑅𝑅. (3) 
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3.4 TAR and TRR 

3.4.1 True Acceptance Rate (TAR): The probability that 

a biometric system correctly accepts an 

authorized user. [12] 

 

𝑇𝐴𝑅 = 1 − 𝐹𝑅𝑅   (4) 

 

3.4.2 True Rejection Rate (TRR): The probability that a 

biometric system correctly rejects an 

unauthorized user. [12] 

 

𝑇𝑅𝑅 = 1 − 𝐹𝐴𝑅    (5) 

 

4 FAR AND FRR RATES OF MOST USED BIOMETRIC 

IDENTIFICATION METHODS 

 

4.1 The False Rejection Rate (FRR) and False 
Acceptance Rate (FAR) for Fingerprint Recognition 
Systems 

Fingerprint recognition systems have been extensively 
studied due to their widespread use in security applications. 
Numerous studies have highlighted the performance of 
these systems under different conditions. 

4.1.1 Robust Partial Fingerprint Recognition: 

Baseline models show an FRR ranging from 14.67% to 
17.57% at an FAR of 0.1% under challenging conditions 
such as a 10% occlusion ratio. Improved models have 
reduced the FRR to 9.99% under the same conditions. [13] 

4.1.2 US-VISIT System: 

The US-VISIT study demonstrated a True Acceptance 
Rate (TAR) of approximately 96%, corresponding to an 
FRR of approximately 4%, with an FAR of 0.09% for a 
large database of 6 million fingerprints. Using high-quality 
fingerprint images, the TAR increased to 98% (FRR of 2%) 
at an FAR of 0.01%. [14] 

4.1.3 Optical Spatial-Frequency Correlation System 

(OSC): 

This system achieved an FRR and FAR balance point 
(Equal Error Rate or EER) at around 0.527. Under real-
world conditions, the performance of this system was found 
to be very high, with significant accuracy improvements 
compared to commercial systems. [15] 

4.1.4 General Findings from Multiple Studies: 

The performance of fingerprint systems can vary widely. 
For example, the TAR ranged from 56.10% to 99.01% 
when the FAR was held constant at 0.01% in various tests. 
State-of-the-art systems achieved TARs greater than 98%, 
indicating an FRR of less than 2% at this FAR threshold. 
[16] 

 
Figure 1: Statistical representation of the different FAR and FRR rates 

in fingerprint recognition 

 

4.2  FRR and FAR  for Iris Recognition Systems 

Iris recognition is highly regarded for its precision and 
reliability. Multiple studies have examined the performance 
of these systems. 

4.2.1 Study on Combined Feature Extraction Methods: 

This study utilized databases such as CASIA V1.0 and 
MNU V.2. The reported results for the CASIA V1.0 
database showed an FAR of approximately 0.02% and an 
FRR of around 0.19%. [12] 

4.2.2 Review of Different Iris Recognition Techniques: 

In a comprehensive review of various techniques, 
including the use of Gabor filters and wavelet transforms, 
the FRR and FAR were found to be highly dependent on 
the feature extraction and matching algorithms used. 
Typical values from reviewed studies showed FAR values 
ranging from 0.1% to 0.5% and FRR values from 0.5% to 
1.5%. [18] 

 
Figure 2: Statistical representation of the different FAR and FRR rates 

in iris recognition 

 

4.3 Facial Recognition FRR and FAR Study Results 

4.3.1 NIST Study on Face Recognition Algorithms: 

The National Institute of Standards and Technology 
(NIST) has conducted extensive evaluations of facial 
recognition algorithms through its Face Recognition 
Vendor Test (FRVT) program. Their studies revealed 
significant variation in accuracy among different 
algorithms. In their 2019 evaluation, NIST found that the 
most accurate algorithms could achieve very low error 
rates: False Acceptance Rates (FAR) of approximately 
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0.25% and similarly low False Rejection Rates (FRR) for 
specific demographic groups. However, the performance 
varied considerably across demographics, with error rates 
sometimes differing by factors ranging from 10 to 100 
times depending on the algorithm and the demographic 
group in question. [19] 

4.3.2 Multimodal Biometric System Study: 

A study published in the International Journal of 
Intelligent Unmanned Systems examined a multimodal 
biometric system combining facial and voice recognition 
using K-Nearest Neighbours (KNN) classifier. This system 
reported a FAR of 0.5% and an FRR of 0.75%, showcasing 
the improved accuracy when integrating multiple biometric 
modalities. [20] 

 
Figure 3: Statistical representation of the different FAR and FRR rates 

in facial recognition 

4.4 FRR and FAR for Voice Recognition Systems 

4.4.1 Multimodal Biometric System Using KNN 

Classifier: 

In a study that incorporated both facial and voice 
recognition, the system achieved a FAR of 0.5% and an 
FRR of 0.75%. This study utilized algorithms such as the 
Viola-Jones method for face detection and Mel-frequency 
cepstral coefficients for processing voice data, which were 
integrated using a KNN classifier. [21] 

 

4.5 FRR and FAR for Retina Scanning 

4.5.1 FRR and FAR Values: 

A study reported that retina scanning has a False 
Rejection Rate (FRR) of 1.8%, which underscores its high 
accuracy in identifying individuals correctly. The False 
Acceptance Rate (FAR) for retina scanning has been 
reported to be extremely low, with some findings 
suggesting an error rate as low as 1 in 10 million. [22] 

4.5.2 Effect of Distance from the Sensor: 

Retina scanning requires close proximity to the scanning 
device, similar to looking through a microscope. This 
necessity for closeness means that any deviation from the 
optimal distance may negatively impact the accuracy and 
effectiveness of the scan. This requirement necessitates 
user compliance and comfort with the scanning procedure, 
as maintaining the correct position is crucial for accurate 
readings. This need for precise positioning and the potential 
discomfort it causes may contribute to higher FRR if the 
user moves or fails to position their eye correctly. [22] 

 

4.6 Hand Geometry Recognition: FRR and FAR Metrics 

4.6.1 Hand Geometry and Vascular Patterns Study: 

This study combined hand geometry and vascular 
patterns for biometric recognition, achieving high 
recognition accuracy. The reported Equal Error Rate 
(EER), representing the point at which FAR and FRR are 
equal, was 0.06%. While the study focuses on EER, this 
low value suggests that both FAR and FRR are minimal. 
[23] 

 

4.6.2 General Hand Geometry Recognition: 

Hand geometry systems typically exhibit FARs and 
FRRs ranging from 0.1% to 0.2%. These figures indicate 
high reliability in distinguishing between authorized and 
unauthorized users. [23] 

4.6.3 Neural Network-Based Hand Geometry 

Recognition: 

A research project employing neural networks for hand 
geometry recognition reported an FAR of 0.13% and an 
FRR of 0.14%. These values reflect the robustness of neural 
network classifiers in improving the accuracy of biometric 
systems. [24] 

 

 
Figure 4: Statistical representation of the different FAR and FRR rates 

in hand geometry recognition 

 

4.7 FRR and FAR of Vein Recognition 

FRR and FAR results from recent studies on vein 
recognition, particularly finger vein and hand vein 
recognition. 

4.7.1 Finger Vein Recognition: 

A systematic review on finger vein recognition 
techniques reported that modern algorithms have improved 
significantly. The study indicated that some advanced 
methods achieve FRRs as low as 0.15% and FARs of 
around 0.1% [25] 

Another study utilizing a convolutional neural network 
(CNN) for finger vein recognition reported an FRR of 
0.11% and an FAR of 0.07%, highlighting the high 
accuracy and reliability of CNN-based methods. [26] 

4.7.2 Hand Vein Recognition: 

A study focusing on dorsal hand vein recognition using 
CNNs found that FRR and FAR could be reduced to 1.2% 
and 1.5%, respectively, when using a feature learning and 
transfer learning approach [27] 
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Another research highlighted that using a combination of 
texture and shape clues in hand vein recognition resulted in 
an FRR of 1.34% and an FAR of 1.05%, demonstrating the 
effectiveness of multimodal feature integration. [27] 

 

 
Figure 5: Statistical representation of the different FAR and FRR rates 

in vein recognition 

 

 

4.8 False Rejection Rate (FRR) and False Acceptance 
Rate (FAR) of Gait Recognition 

4.8.1 Security and Privacy Enhanced Gait 

Authentication: 

This study reported an FRR of 4.17% and an FAR of 0% 

using gait data from specific datasets, including OU-ISIR. 

[28] 

4.8.2 OpenGait Benchmark Study: 

An in-depth analysis in the OpenGait study highlighted the 

practical challenges and performance variations across 

different environmental conditions. It reported that certain 

advanced models could achieve an FRR of 5.44% and FAR 

of 0.05% under optimized, controlled settings. [29] 

4.8.3 Gait Recognition using CNNs: 

A study focusing on convolutional neural network (CNN) 

models for gait recognition achieved an FRR of 3.2% and 

an FAR of 2.1%, demonstrating the potential of deep 

learning techniques in improving gait recognition accuracy. 

[30] 

 

Figure 6: Statistical representation of the different FAR and FRR rates 

in gait recognition 

 

4.9 An overview of the FAR and FRR rates 

 

Table 1: Comparative summary of FAR and FRR rates 

 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 

F
A
R 

0.0
1% 

0.0
2% 

0.5
% 

0.5
% 

-* 0.1
% 

0.0
7% 

2.1
% 

FR
R 

2% 0.1
9% 

0.7
5% 

0.7
5% 

1.8
% 

0.1
% 

0.1
1% 

3.2
% 

 

The values presentedin the table represent the most 
favourable for each type of biometric identification 
method. 

* No conclusive FAR value was reported for retina 
scanning. For further details, see section (4.5), as the 
number from 4.1 to 4.8 corresponds to the subsection 
numbers. 

 

 
Figure 7: Statistical representation of the different FAR and FRR rates 

across different biometric identification methods 

 

As observed, FAR and FRR rates are impressively small 
throughout every method of biometric identification type, 
however, these statistical numbers represent measurements 
taken in ideal laboratory conditions, where no attempts at 
impersonation were present. There are multiple weak 
points to each of the methods (as mentioned above in the 
definitions of the methods), some of which are easier to 
exploit than others.  

Accordingly, the pursuit for a safer biometric 
identification method still continues. One possible solution 
to such an impossible task might be brainwave-based 
identification. 

 

 

5 BRAINWAVE BIOMETRIC IDENTIFICATION -
THEORETICAL BACKGROUND 

 

5.1 Overview 

Brainwaves are electrical patterns generated by the 
synchronized firing of neurons in the brain. There are 
several types of brainwaves, each associated with different 
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states of consciousness and mental activities. . These 
electrical signals generate electromagnetic waves, and their 
measurement through electroencephalography (EEG) 
unveils the dynamic landscape of neural activity. Neurons, 
the fundamental units of the brain, communicate through 
electrical impulses. 

5.2 Types of brainwaves 

When large groups of neurons fire in a coordinated 
manner, they produce distinct and measurable wave 
patterns. These patterns are categorized based on their 
frequency, measured in Hertz (Hz), and are related to 
distinct mental states. 

5.2.1 Alpha brainwaves (8 – 13 Hz) 

Alpha waves are associated with a relaxed and alert state 
of consciousness. They are typically observed when the 
mind is calm, such as during meditation or light relaxation. 
Alpha waves are also observed when the eyes are closed 
but the individual is not asleep. Increased alpha activity 
may enhance learning, concentration, and mental 
coordination. [33] 

5.2.2 Beta brainwaves (13 – 30 Hz) 

Beta waves are associated with active, analytical thought 
and concentration. They predominate during wakefulness, 
especially when engaged in problem-solving, decision-
making, or focused mental tasks. Higher beta frequencies 
are associated with stress and anxiety, while lower beta 
frequencies are linked to heightened alertness and cognitive 
engagement. 

Different categorization methods: Categorizing beta 
brainwaves involves various methods aimed at discerning 
distinct aspects of their activity, contributing to a nuanced 
understanding of cognitive states. This enables researchers 
and clinicians to interpret neural dynamics 
comprehensively. Several categorization methods for beta 
brainwaves encompass frequency bands, task-related 
changes, and spatial distribution. 

Spatial Distribution: 

 Rolandic beta brainwaves: Rolandic beta waves 
originate in the sensorimotor cortex, playing a crucial role 
in motor planning and execution. These waves are 
implicated in motor functions and are often observed 
during movement preparation. [31], [34] 

 Frontal beta brainwaves: Frontal beta waves 
emanate from the frontal lobe, contributing to higher 
cognitive functions, decision-making, and executive 
control. Frontal beta activity is linked to active mental 
engagement, attentional control, and complex cognitive 
processes. [31], [34] 

5.2.3 Gamma brainwaves (30 – 100 Hz) 

Gamma waves are the fastest brainwaves and are 
associated with high-level cognitive functions, such as 
memory recall and problem-solving. They are further 
linked to peak states of concentration and heightened 
perception. Gamma waves are thought to play a role in 
integrating information across different brain regions and 
are associated with moments of insight and learning.[33] 

5.2.4 Theta brainwaves (4 - 8 Hz) 

Theta waves are commonly present during light sleep, 
deep relaxation, and meditation. They are also associated 
with creativity, intuition, and a dream-like state. Theta 
waves play a role in memory consolidation and are often 

observed during the early stages of sleep or when engaged 
in activities requiring a focused, yet relaxed, state of mind. 
[38] 

5.2.5 Delta brainwaves (0.4 – 4 Hz) 

Delta waves are the slowest brainwaves and are most 
prominent during deep sleep. They are associated with the 
restorative and healing functions of sleep, including 
physical rejuvenation and immune system maintenance. 
Delta waves are crucial for overall well-being and are 
indicative of the deepest stages of non-REM sleep. [33] 

 

5.3 Types of identification brainwave methods 

Brainwave identification, a subtype of biometrics, uses 
the brain's unique electrical patterns as a distinguishing 
characteristic. Several methods have been used to extract 
these different patterns. 

5.3.1 Power Spectral Density – PSD 

PSD is a fundamental signal processing technique that 
decomposes a signal into its constituent frequency 
components. In the context of brainwaves, PSD provides a 
spectral representation of brain activity. By quantifying the 
power distribution across different frequency bands (delta, 
theta, alpha, beta, gamma), PSD offers insights into the 
overall brain state and cognitive processes. For 
identification, variations in the spectral power distribution 
across individuals can serve as discriminating features. [35] 

5.3.2 Geometrical Approach 

Geometrical features focus on the shape and form of 
brainwave signals. Fractal dimension metrics quantify the 
complexity and self-similarity of the EEG signal and serve 
as discriminative features. Additionally, techniques like 
principal component analysis (PCA) and independent 
component analysis (ICA) are applied to reduce 
dimensionality and extract underlying components. [36]  

5.3.3 Machine Learning 

Machine learning algorithms excel at finding patterns in 
complex datasets. Support Vector Machines (SVMs), 
Random Forests, and Artificial Neural Networks (ANNs) 
are commonly used for brainwave classification. These 
algorithms can learn to differentiate individuals based on 
extracted features. [32,37] 

5.3.4 Time-Frequency Analysis with Wavelet 

Transform 

The wavelet transform offers a powerful tool for 
analysing the time-frequency characteristics of brainwaves. 
By decomposing the signal into different frequency 
components at different time scales, it reveals how brain 
activity evolves over time. Wavelet coefficients can be used 
as features for classification, capturing both the spectral and 
temporal aspects of brainwave patterns. [38] 

5.3.5 Dynamic Time Warping – DTW 

DTW is a versatile algorithm for comparing time series 
data, making it suitable for beta wave analysis. It allows for 
non-linear alignment of two time series, accommodating 
variations in speed and rhythm. By calculating the distance 
between two beta wave sequences using DTW, it's possible 
to assess their similarity and determine if they originate 
from the same individual. [39] 

5.3.6 Hidden Markov Models 



Réka Veronika Sallay & Arnold Őszi (2025): Brainwaves in Biometric Identification: A Theoretical Framework and 
Novel Methodology  Bánki Közlemények 7(2), 28-37 

34 

 

HMMs are probabilistic models that are well-suited for 
capturing the temporal dynamics of brain signals. By 
modelling brainwave sequences as a hidden Markov 
process, it's possible to represent the underlying states and 
transitions between them. HMMs can be used for both 
classification and generation of synthetic brainwave 
patterns. [40] 

5.3.7 Entropy Measures for Complexity Analysis 

Entropy quantifies the degree of disorder or randomness 
in a system. Applied to brainwaves, it can quantify the 
complexity and variability of brain activity. Individuals 
might exhibit distinct entropy levels in their brainwave 
patterns, providing another feature for identification. 
[41,42] 

5.4 Measuring brainwaves 

Brainwave measurement technologies record and 
analyse the electrical activity produced by neurons in the 
brain. These techniques are critical for studying brain 
function and detecting neurological disorders. Various 
approaches have distinct advantages in terms of temporal 
and spatial resolution, invasiveness, and practical use. 

5.4.1 EEG – Electroencephalography 

Electroencephalography (EEG) is one of the most used 
brainwave measurement methods. It involves placing 
electrodes on the scalp to detect and record the electrical 
activity generated by neurons. EEG captures brainwaves in 
real-time, offering high temporal resolution, which makes 
it particularly useful for studying dynamic brain activities 
such as sleep, cognition, and epileptic seizures. The process 
begins with strategically placing electrodes on the scalp, 
usually following the International 10-20 system. The 
electrodes pick up electrical signals produced by neuronal 
activity, which are then amplified and recorded for further 
analysis. EEG is widely used in clinical diagnosis for 
conditions like epilepsy, sleep disorders, and brain injuries, 
as well as in research settings to study cognitive processes 
and brain functions. Despite its advantages, EEG has 
limited spatial resolution and is prone to artifacts from 
muscle movements and external electrical sources. [43] 

5.4.2 MEG – Magnetoencephalography 

Magnetoencephalography (MEG) measures the 
magnetic fields produced by neural activity, providing high 
temporal resolution comparable to EEG but with better 
spatial accuracy. MEG sensors detect the magnetic fields 
generated by neuronal activity, which are then recorded and 
mapped to localize the source of the brain activity. This 
technique is highly valuable for clinical applications, such 
as mapping brain function prior to surgery, especially for 
epilepsy patients. It is also used extensively in research to 
study brain dynamics and functional connectivity. While 
MEG offers improved spatial resolution over EEG, it is 
more expensive and requires specialized facilities. 
Additionally, MEG is sensitive to head movements, which 
can affect the quality of the data. [44] 

5.4.3 fMRI - Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) 
indirectly measures brain activity by detecting changes in 
blood flow and oxygenation levels, offering excellent 
spatial resolution. The fMRI process involves placing the 
subject in an MRI scanner, where a strong magnetic field is 
applied. The scanner detects changes in blood flow and 
oxygenation associated with neural activity, collecting data 

over time to map brain activity. This method is particularly 
useful for identifying brain regions affected by stroke, 
tumours, or neurological disorders, and for investigating 
brain function and cognitive processes. However, fMRI has 
slower temporal resolution compared to EEG and MEG, is 
expensive, and may cause discomfort due to the confined 
space of the MRI scanner. [45] 

5.4.4 NIRS - Near-Infrared Spectroscopy 

Near-Infrared Spectroscopy (NIRS) uses light to monitor 
changes in blood oxygen levels in the brain, providing a 
portable and non-invasive method for measuring brain 
activity. NIRS devices emit near-infrared light into the 
scalp, which penetrates the brain and is absorbed differently 
by oxygenated and deoxygenated blood. Detectors measure 
the reflected light, offering information about blood oxygen 
levels and, consequently, brain activity. NIRS is used in 
clinical monitoring, cognitive research, and portable 
applications such as field studies. Its advantages include 
portability, non-invasiveness, and real-time monitoring 
capabilities. [46] 

5.4.5 fNIRS - Functional Near-Infrared Spectroscopy 

Functional Near-Infrared Spectroscopy (fNIRS) is a 
variation of NIRS that measures brain activity by detecting 
changes in blood oxygenation levels during cognitive tasks. 
The process involves emitting near-infrared light into the 
scalp, which is absorbed differently by oxygenated and 
deoxygenated blood. Detectors measure the reflected light, 
providing information on blood oxygen levels. fNIRS is 
applied in cognitive research, clinical applications, and 
portable applications such as field studies. [47] 

5.4.6 PET - Positron Emission Tomography 

Positron Emission Tomography (PET) involves injecting 
radioactive tracers to visualize brain activity, providing 
insights into metabolic processes and neurotransmitter 
functions. The process starts with injecting a radioactive 
tracer into the bloodstream, which accumulates in areas of 
high activity. The PET scanner detects the gamma rays 
emitted by the tracer, and the data are reconstructed into 
images showing tracer concentration. PET is used for 
clinical diagnosis, research, and drug development, 
offering unique insights into brain metabolism and 
chemistry. However, PET requires the injection of 
radioactive tracers, is expensive, and has slower temporal 
resolution compared to EEG and MEG. [48] 

5.4.7 SPECT - Single Photon Emission Computed 

Tomography 

Single Photon Emission Computed Tomography 
(SPECT) is analogous to PET but uses different tracers and 
detection methods. After injecting a radioactive tracer into 
the bloodstream, the SPECT scanner detects gamma rays 
emitted by the tracer, and the data are reconstructed into 3D 
images showing tracer distribution. SPECT is used in 
clinical diagnosis, neuroscience research to assess brain 
perfusion, detect seizures, and diagnose dementia. While 
SPECT provides functional imaging and can image deep 
brain structures, it requires radioactive tracers, has lower 
spatial and temporal resolution compared to PET and fMRI, 
and involves exposure to small amounts of radiation. [49] 
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6 INTRODUCING A  NEW METHOD 

 

6.1 Motivation 

In the field of biometric identification, a new frontier is 
emerging that uses the unique electrical signals of the brain 
to validate individuals. This cutting-edge technique, known 
as brainwave-based biometric identification, takes 
advantage of the distinct properties of brainwaves. In this 
study, we focus on beta brainwaves, which range from 13 
to 30 Hz, and are mostly connected with active, analytical 
cognition and high levels of cognitive engagement. These 
waves, with their complicated and individualized patterns 
that reflect a person's unique cerebral activity during 
cognitive tasks, offer a viable option for biometric 
identification. 

While most brainwave-based biometric identification 
systems have generally centred on alpha brainwaves, which 
are associated with relaxation and alertness, focusing on 
beta brainwaves introduces a novel dimension to biometric 
identification research. Beta waves vary significantly 
between persons during tasks that require concentration and 
problem-solving, providing a rich source of data for 
creating robust identification algorithms. 

Electroencephalography (EEG) is the most 
straightforward and accessible method for measuring 
brainwave activity, making it particularly suitable for 
practical biometric applications. EEG involves placing 
electrodes on the scalp to detect and record the electrical 
activity generated by neurons, offering real-time brainwave 
capture with high temporal resolution. This ease of use and 
non-invasive nature make EEG a preferable choice over 
other measurement techniques like MEG, fMRI, and PET, 
which can be more complex, expensive, and less accessible. 

Implementing brainwave-based identification methods 
such as power spectral density, geometrical approaches, 
machine learning, time-frequency analysis with wavelet 
transform, dynamic time warping, hidden Markov models, 
and entropy measures for complexity analysis involves 
considerable computational load and time. These 
techniques require sophisticated processing to effectively 
extract, decode, and classify the unique brainwave patterns, 
ensuring reliable and secure biometric identification. 

 

6.2 Our Novel Method 

To enhance the investigation of brainwave-based 
biometric identification, we launched a comprehensive 
research program centred on the distinct patterns of frontal 
beta brainwaves. Our goal is to create a robust and reliable 
biometric identification system that makes use of the 
complexities of these brainwave patterns. To support this 
aim, we developed a simpler EEG circuit designed 
exclusively for this study. Our circuit is inspired by the 
following design [50], that is specifically built for alpha and 
beta brainwaves combined data acquisition.  

Our custom-built simplified EEG circuit is designed to 
be both efficient and user-friendly, powered by two 9V 
batteries to ensure portability and ease of use. This circuit 
can capture the delicate electrical signals produced by 
neuronal activity in the frontal lobe, which are crucial for 
analysing beta brainwaves. We hope to take advantage of 
the distinct cognitive engagement patterns that occur during 

concentration and problem-solving tasks by focusing on the 
frontal lobe. 

The captured brainwave data is transmitted to a computer 
via a dedicated connection. We have developed a 
specialized software program that receives these signals in 
the form of audio files. This program is a critical 
component of our research setup, designed to handle the 
complex processing requirements of brainwave data. Upon 
receiving the audio files, the program converts them into 
the appropriate digital format for further analysis. 

One of the key functionalities of our software is its 
ability to plot the measured brainwave data points, 
providing a visual representation of the neural activity. This 
visual output is essential for initial inspections and real-
time monitoring during data acquisition sessions. Beyond 
plotting, the program also employs Fourier transform 
techniques to convert the time-domain signals into their 
frequency-domain counterparts. This transformation is 
necessary for isolating and analysing the specific beta wave 
frequencies, allowing us to delve deeper into the unique 
patterns associated with individual cognitive engagement. 

 

 
Figure 8: Our simplified EEG circuit in real life 

Fig. 8 shows our simplified EEG circuit specifically to 
measure frontal beta brainwaves and convert them to a 
usable file format to computers. 

 

 
Figure 9: The representation of subject 1’s measured frontal beta 

brainwave 

Fig. 9 illustrates an example of the graphical 
representationof the, frontal beta brainwave in Fourier 
space, measured from Subject 1 using our custom device. 
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Currently our program can only measure for a short 
duration, due to data size constraints (approximately 44,100 
samples per second). 

 

7 FUTURE PLANS 

 

As discussed before, the device currently can only 
measure for about half a second because of computational 
problems regarding the data size. In the future we aim to 
extend the recording duration to at least 10 minutes. 

Also, we wish to compare the different measurement 
types, and identify differences and similarities between 
alpha, beta, and frontal beta brainwaves, to discover the 
brainwave-based identification method with the lowest 
FAR and FRR rate. 

We also plan to take measurements from a bigger data 
pool and public to include a more diverse and statistically 
representative sample. 

 

8 CONCLUSION 

 

This study presents a theoretical exploration of 
brainwave applications in biometric identification, 
covering multiple frequency bands and introducing a novel 
method focusing on frontal beta brainwaves. Leveraging 
electroencephalography (EEG), this method expands the 
scope of biometric systems. Brainwaves, generated by 
synchronized neuronal activity, offer insights into various 
states of consciousness. Beta brainwaves, associated with 
analytical thought, are categorized based on frequency and 
subjected to different identification methods. EEG, a key 
measurement technique, captures and analyses brainwave 
patterns, contributing to advancements in biometric 
identification. Ongoing research focuses on beta 
brainwaves, employing a novel approach that diverges 
from existing methodologies. The paper concludes by 
presenting measurements of frontal beta brainwaves and 
Fourier transform analysis, highlighting our efforts to 
reduce signal noise and enhance salient featuresfor 
improved identification accuracy. 
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