Development of Selective Laser Melting of Ti6Al4V Alloy for Tissue Engineering: Review

  • Hassanen Jaber Obuda University
  • Tünde Kovács
Keywords: Selective Laser Melting, Ti-6Al-4V, phase transformations, Ti6Al4V

Abstract

Additive manufacturing, particularly Selective Laser Melting (SLM), is an important process in biomedical engineering applications. The recent development of Ti alloys for applications in biomedical field is accompanied with a challenges to better understand the phase transformations and mechanical properties of these materials during SLM. The present paper reviews the fundamental understanding of SLM thermal process influencing the microstructure evolution of Ti6Al4V. The focus is on the effect of SLM parameters on microstructure and mechanical properties of Ti6Al4V. In addition, review the most important problems and solutions.

References

1. Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928. doi:10.1007/s11665-014-0958-z
2. King, W. E., Anderson, A. T., Ferencz, R. M., Hodge, N. E., Kamath, C., Khairallah, S. A., & Rubenchik, A. M. (2017). Laser powder-bed fusion additive anufacturing of metals; physics, computational, and materials challenges. Additive Manufacturing Handbook: Product Development for the Defense Industry, 041304, 461–506. doi:10.1201/9781315119106
3. Hassanen, J., & Tunde, K. (2019). Selective laser melting of Ti alloys and hydroxyapatite for tissue engineering: progress and challenges. Materials Research Express. doi:10.1088/2053-1591/ab1dee
4. Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87–98. doi:10.1016/j.addma.2014.08.002
5. Zhang, L.-C., & Attar, H. (2016). Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review . Advanced Engineering Materials, 18(4), 463–475. doi:10.1002/adem.201500419
6. Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4), 1–22. doi:10.1063/1.4935926
7. Kusuma, C. (2016). The effect of laser power and scan speed on melt pool characteristics of pure Titanium and Ti-6Al-4V alloy for selective laser melting. Master thesis, Wright Sta. Retrieved from https://etd.ohiolink.edu/!etd.send_file?accession=wright1464271345&disposition=inline
8. Attar, H., Calin, M., Zhang, L. C., Scudino, S., & Eckert, J. (2014). Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering A, 593, 170–177. doi:10.1016/j.msea.2013.11.038
9. Aboulkhair, N. T., Everitt, N. M., Ashcroft, I., & Tuck, C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1, 77–86. doi:10.1016/j.addma.2014.08.001
10. Smallman, R. E., & Ngan, A. H. W. (2007). Case examination of biomaterials, sports materials and nanomaterials. Physical Metallurgy and Advanced Materials Engineering (Seventh Edition), 583–621. doi:http://dx.doi.org/10.1016/B978-075066906-1/50015-9
11. Oshida, • Yoshiki. (2007). Bioscience and Bioengineering of Titanium Materials. Elsevier Ltd.
12. Ahmed, T., & Rack, H. J. (1998). Phase transformations during cooling in α+β titanium alloys. Materials Science and Engineering A, 243, 206–211. doi:10.1016/S0921-5093(97)00802-2
13. Lütjering, G. (1998). Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering: A, 243, 32–45. doi:10.1016/S0921-5093(97)00778-8
14. Galarraga, H., Warren, R. J., Lados, D. A., Dehoff, R. R., Kirka, M. M., & Nandwana, P. (2017). Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Materials Science and Engineering A, 685, 417–428. doi:10.1016/j.msea.2017.01.019
15. AMS-H-81200. (2011). Heat Treatment of Titanium Alloys, (February), 1–11.
16. Pinke, P., Čaplovič, Ľ., & Kovacs, T. A. (2004). The influence of heat treatment on the microstructure of the the influence of heat treatment on the microstructure of the casted ti6al4v titanium alloy. Proceedings of International Scientific Conference COMAT-TECH, Bratisalva, Vydavatel, 1042–1046.
17. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J. Van, & Kruth, J. P. (2010). A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia, 58(9), 3303–3312. doi:10.1016/j.actamat.2010.02.004
18. Donachie, M. J. (2000). Titanium: A Technical Guide: ASM International.
19. Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., … Wicker, R. B. (2009). Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 20–32. doi:10.1016/j.jmbbm.2008.05.004
20. Qiu, C., Adkins, N. J. E., & Attallah, M. M. (2013). Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Materials Science and Engineering A, 578, 230–239. doi:10.1016/j.msea.2013.04.099
21. Vrancken, B., Thijs, L., Kruth, J. P., & Van Humbeeck, J. (2012). Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds, 541, 177–185. doi:10.1016/j.jallcom.2012.07.022
22. Shi, J. (2017). Development of Functionally Graded Implant Materials in Commercial Use. Munich Personal RePEc Archive Development, (76351).
23. Bandyopadhyay, A., Espana, F., Balla, V. K., Bose, S., Ohgami, Y., & Davies, N. M. (2010). Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomaterialia, 6(4), 1640–1648. doi:10.1016/j.actbio.2009.11.011
24. España, F. A., Balla, V. K., Bose, S., & Bandyopadhyay, A. (2010). Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Materials Science and Engineering C, 30, 50–57. doi:10.1016/j.msec.2009.08.006
25. Hao, L., Dadbakhsh, S., Seaman, O., & Felstead, M. (2009). Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. Journal of Materials Processing Technology, 209(17), 5793–5801. doi:10.1016/j.jmatprotec.2009.06.012
26. Biemond, J. E., Hannink, G., Verdonschot, N., & Buma, P. (2013). Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating. Journal of Materials Science: Materials in Medicine, 24(3), 745–753. doi:10.1007/s10856-012-4836-7
27. Jaber, H. L., Hammood, A. S., & Parvin, N. (2018). Synthesis and characterization of hydroxyapatite powder from natural Camelus bone. Journal of the Australian Ceramic Society, 54(1), 1–10. doi:10.1007/s41779-017-0120-0
28. Hammood, A. S., Hassan, S. S., Alkhafagy, M. T., & Jaber, H. L. (2019). Efect of calcination temperature on characterization of natural hydroxyapatite prepared from carp fsh bones. SN Applied Sciences, (May). doi:10.1007/s42452-019-0396-5
Published
2020-05-15
Section
Materials Science and Technology (Anyagtudomány és Technológia)