Origami's Mathematical Precision: Transforming Medicine Through Folded Geometry

Szerzők

  • Enisa Trubljanin .

Kulcsszavak:

Origami, Origami geometry, Retina

Absztrakt

Origami constructions, inspired by the ancient Japanese art of folding paper, are gaining importance in mathematics and science. The paper explores the mathematical aspects of origami, with a focus on their geometric constructions and applications. Applications of origami in the field of medicine were investigated. The paper also discusses and addresses advanced topics such as modular origami and origami computing. Through this work, the goal is to understand the potential of origami as a creative and interdisciplinary tool in the medical field, highlighting opportunities for innovation and progress.

Hivatkozások

Hatori, K. (2011). History of Origami in the East and the West before Interfusion. Origami, 5, 3-11.

Lang, R. J. (2007). The science of origami. Physics world, 20(2), 30.

Debnath, S., & Fei, L. J. (2013). Origami theory and its applications: a literature review. World academy of science, engineering and technology, 1131-1135.

Ahmed, A. R., Gauntlett, O. C., & Camci-Unal, G. (2021). Origami-inspired approaches for biomedical applications. ACS omega, 6(1), 46-54.

Sargent, B., Butler, J., Seymour, K., Bailey, D., Jensen, B., Magleby, S., & Howell, L. (2020). An origami-based medical support system to mitigate flexible shaft buckling. Journal of Mechanisms and Robotics, 12(4), 041005.

Rus, D., & Tolley, M. T. (2018). Design, fabrication and control of origami robots. Nature Reviews Materials, 3(6), 101-112.

Bolaños Quiñones, V. A., Zhu, H., Solovev, A. A., Mei, Y., & Gracias, D. H. (2018). Origami biosystems: 3D assembly methods for biomedical applications. Advanced Biosystems, 2(12), 1800230.

Green, D. W., Watson, G. S., Watson, J., & Abraham, S. J. (2012). New biomimetic directions in regenerative ophthalmology. Advanced Healthcare Materials, 1(2), 140-148.

Loh, M., & Emami-Neyestanak, A. (2015). Capacitive proximity communication with distributed alignment sensing for origami biomedical implants. IEEE Journal of Solid-State Circuits, 50(5), 1275-1286.

Cheng, D. L., Greenberg, P. B., & Borton, D. A. (2017). Advances in retinal prosthetic research: a systematic review of engineering and clinical characteristics of current prosthetic initiatives. Current Eye Research, 42(3), 334-347.

Bareket, L., Barriga-Rivera, A., Zapf, M. P., Lovell, N. H., & Suaning, G. J. (2017). Progress in artificial vision through suprachoroidal retinal implants. Journal of Neural Engineering, 14(4), 045002.

Liu, Y., Park, J., Lang, R. J., Emami-Neyestanak, A., Pellegrino, S., Humayun, M. S., & Tai, Y. C. (2013, June). Parylene origami structure for intraocular implantation. In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) (pp. 1549-1552). IEEE.

Ge, Y., Lalitharatne, T. D., & Nanayakkara, T. (2022). Origami inspired design for capsule endoscope to retrograde using intestinal peristalsis. IEEE Robotics and Automation Letters, 7(2), 5429-5435.

Alian, A., Zari, E., Wang, Z., Franco, E., Avery, J. P., Runciman, M., ... & Mylonas, G. (2023). Current engineering developments for robotic systems in flexible endoscopy. Techniques and Innovations in Gastrointestinal Endoscopy, 25(1), 67-81.

Ranzani, T., Russo, S., Schwab, F., Walsh, C. J., & Wood, R. J. (2017, May). Deployable stabilization mechanisms for endoscopic procedures. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1125-1131). IEEE.

Lang, R. J. (1996, May). A computational algorithm for origami design. In : Proceedings of the twelfth annual symposium on Computational geometry (pp. 98-105)

##submission.downloads##

Megjelent

2024-10-25

Folyóirat szám

Rovat

Technical Informatics (Műszaki Informatika)