Brainwaves in Biometric Identification: A Theoretical Framework and Novel Methodology

Authors

  • Réka Veronika Sallay
  • Arnold Őszi

Keywords:

brainwaves, biometric identification, beta brain waves, EEG, FRR, FAR

Abstract

This scientific paper provides a thorough overview of biometric identification methods, including fingerprints, facial recognition, iris scans, voice patterns, and brainwaves. We examine the unique features of each type and compare their success rates, False Acceptance Rates (FAR), and False Rejection Rates (FRR) to highlight their strengths and weaknesses. We also introduce a new method using frontal beta brainwaves for biometric identification with electroencephalography (EEG). This approach promises better security and reliability, potentially setting a new standard in biometric systems. While not detailed extensively, we outline its benefits and express hope for future advancements in brainwave-based biometrics. Our goal is to help the understanding and application of biometric systems, offering new insights and possibilities for secure and reliable identification methods. This work aims to push the boundaries of biometric research and pave the way for future innovations in secure identification.

References

Maltoni, D., Maio, D., & Jain, A. K. (2003). Biometric Systems and Applications. CRC Press.

Aminu Ghali, Abdulrahman & Jamel, Sapiee & Mohamad, Kamaruddin & Yakub Abubakar, Nasir & Mat Deris, Mustafa. (2017). A Review of Iris Recognition Algorithms. JOIV: International Journal on Informatics Visualization. 1.

Kaur P, Krishan K, Sharma SK, Kanchan T. Facial-recognition algorithms: A literature review. Medicine, Science and the Law.

R. A. Rashid, N. H. Mahalin, M. A. Sarijari and A. A. Abdul Aziz, "Security system using biometric technology: Design and implementation of Voice Recognition System (VRS)," 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, pp. 898-902.

Panda, N. R., & Sahoo, A. K. (2022). A Detailed Systematic Review on Retinal Image Segmentation Methods. Journal of digital imaging

Ayurzana, Odgerel & Pumbuurei, Bumduuren & Kim, Hiesik. (2013). A study of hand-geometry recognition system. 8th International Forum on Strategic Technology 2013, IFOST 2013 - Proceedings. 2

Wu, Wei & Elliott, Stephen & Lin, Sen & Sun, Shenshen & Tang, Yandong. (2019). A review of palm vein recognition. IET Biometrics.

Nixon, M. & Carter, J. & Cunado, D. & Huang, Ping & Stevenage, Sarah. (2006). Automatic Gait Recognition. 10.1007/0-306-47044-6_11.

Gupta, Phalguni & Purkait, Ruma. (2007). Ear Biometrics: A New Approach. 46-50. 1

Butler, J. M., McCord, B. R., & Holland, M. M. (2003). Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers. Academic Press.

Nazareth, A. (2020). Demystifying false acceptance rate (far) and false rejection rate (FRR) in Electronic-KYC. Retrieved from https://www.dicorm.com.my/post/demystifying-far-and-frr

Abbasi, M. Improving identification performance in iris recognition systems through combined feature extraction based on binary genetics. SN Appl. Sci. 1, 730 (2019)

Jain, Anil & Ross, Arun & Prabhakar, Salil. (2004). An Introduction to Biometric Recognition. Circuits and Systems for Video Technology, IEEE Transactions on. 14. 4

Ayman Iskandar et al (2024). Biometric systems for identification and verification scenarios using spatial footsteps components. Springer Link Volume 36, pages 3817-3836

Patrick, Andrew. (2004). Usability and Acceptability of Biometric Security Systems.

Hiroyuki Yoshimura, (2011). Optical spatial-frequency correlation system for fingerprint recognition. Chapter metrics overview.

Nakanishi I. and Miyamoto C. 2010. On-Demand Biometric Authentication of Computer Users Using Brain Waves. In Networked Digital Technologies. F. Zavoral et al. Eds. Communications in Computer and Information Science (CCIS) series of Springer LNCS, 87 (Jul. 2010), 504--514.

Sarfraz, Muhammad & Alfialy, Nourah. (2022). Introductory Chapter: On Biometrics with Iris.

Romine, C. (2020). Facial Recognition Technology (FRT). Retrieved from https://www.nist.gov/speech-testimony/facial-recognition-technology-frt-0

Boutine, C. (2020). NIST study evaluates effects of race, age, sex on face recognition software. Retrieved from https://www.nist.gov/news-events/news/2019/12/nist-study-evaluates-effects-race-age-sex-face-recognition-software

Dinesh Kumar D.S. et al., (2019). Implementing and analysing FAR and FRR for face and voice recognition (multimodal) using KNN classifier.

Retinal scanning definition, faqs. (2022). Retrieved from https://www.innovatrics.com/glossary/iris-retinal-scanning/

GiTae Park and Soowon Kim, (2013). Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns. MDPI, Physical Sensors.

Clark, M. (2020). False acceptance rate (far) and false recognition rate (FRR). Retrieved from https://www.bayometric.com/false-acceptance-rate-far-false-recognition-rate-frr/

Kashif Shaheed et al (2018). A Systematic Review of Finger Vein Recognition Techniques, Kashif Shaheed et al., MDPI, Information.

Mohammad H. Alshayeji et al. (2022), Efficient hand vein recognition using local key point descriptors and directional gradients, Springer Link, volume 81, pages 15687–15705.

Rajendra Kumar et al., Dorsal Hand Vein-Biometric Recognition Using Convolution Neural Network., Conference paper, pp 1087-1107.

Tran, L., Nguyen, T., Kim, H., & Choid, D. (n.d.). Security and privacy enhanced gait authentication with Random Representation Learning and Digital Lockers. Retrieved from https://ar5iv.labs.arxiv.org/html/2108.02400

Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., & Yu, S. (2022)., OpenGait: Revisiting Gait Recognition Toward Better Practicality

M. Sivarathinabala et al., (2016). A Study on Security and Surveillance System Using Gait Recognition. Springer Link pp 227-252,

Kropotov, J. D. (2016). Beta and Gamma Rhythms. Functional Neuromarkers for Psychiatry, 107–119.

Palaniappan R. and Mandic D. P. 2007. Biometrics from Brain Electrical Activity: A Machine Learning Approach. IEEE Trans. on Pattern Analysis and Machine Intelligence. 29, 4 (2007), 738--742.

KOUDELKOVÁ, Zuzana a Martin STRMISKA. Introduction to the identification of brain waves based on their frequency. In: MATEC Web of Conferences [online]. Majorca: EDP Sciences, (2018)

Juri D. Kropotov, (2009). Quantitative EEG, Event-Related Potentials and Neurotherapy, Academic Press

Cohen, L. (1995). Time-Frequency Analysis of EEG Signals: A Tutorial. IEEE Signal Processing Magazine, 13(4), 33–46.

Jelinek, Herbert & Fernandez, Eduardo. (1998). Neurons and fractals: How reliable and useful are calculations of offractal dimensions? Journal of Neuroscience Methods. 81. 9-18.

Hu, Z.B., Buriachok, V., TajDini, M., Sokolov, V. (2021). Authentication System by Human Brainwaves Using Machine Learning and Artificial Intelligence. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education IV. ICCSEEA 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 83. Springer, Cham

Wavelet Transform in EEG Signal Analysis, Samar, V. J. et al. (1999). Journal of Clinical Neurophysiology.

Dynamic Time Warping for EEG Signal Comparison, Müller, M. (2007). Information Retrieval for Music and Motion.

Rabiner, L. R. (1989). Hidden Markov Models for EEG Signal Processing. Proceedings of the IEEE.

Burns, Thomas. (2015). Combining complexity measures of EEG data: multiplying measures reveal previously hidden information.

Costa, Madalena & Goldberger, Ary & Peng, Chung-Kang. (2005). Multiscale entropy of biological signals. Physical review. E, Statistical, nonlinear, and soft matter physics.

Niedermeyer, E., & da Silva, F. L. (2004). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins.

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413-497.

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869-878.

Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage, 54(4), 2808-2821.

Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf, U., & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 85, 6-27.

National Research Council (US) and Institute of Medicine (US) Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging. Mathematics and Physics of Emerging Biomedical Imaging. Washington (DC): National Academies Press (US); 1996. Chapter 6, Positron Emission Tomography.

Hogg, Peter & Seeram, Euclid. (2013). Practical SPECT/CT in nuclear medicine.

cah6, user. "DIY EEG (and ECG) Circuit: 12 Steps (with Pictures) - Instructables." Instructables, Instructables, 10 Aug. 2012, https://www.instructables.com/DIY-EEG-and-ECG-Circuit/.

Downloads

Published

2025-08-12

Issue

Section

Intelligent Mechatronic Systems