Effect of Cooling Rate on the Microstructure and Mechanical Properties of Low Carbon Steel

Szerzők

  • Nurşen Saklakoğlu Celal Bayar University
  • Firat Ünalp
  • Mehmet Cem Demir
  • Çağlar Hocalar
  • Selçuk Demirok

Kulcsszavak:

hot forging, cooling rate, accelerated air cooling, direct cooling, microalloyed steel

Absztrakt

This paper reports the effect of cooling rate on the microstructure and mechanical -properties of a kind of low carbon steel microalloyed with V and Nb content (0,01%and0,0164%) after hot deformation by using real forging experiments. The results show that cooling rate has a significant effect on the microstructure, yield strength, tensile strength and impact energy of the P285NH steel. The accelareted air cooling with 1,48 oC/s cooling rate yielded to the formation of mixed structure with acicular ferrite and bainitic ferrite which resulted higher tensile strength and lower toughness. In this case, the normalization step was needed to obtain higher toughness which customer’s demand.

Hivatkozások

[1] Panjan, P., Urankar, I., Navinsek, B., Tercelj, M., Turk, R., Cekada, M., Leskovsek, V. (2002). Improvement of hot forging tools with duplex treatment: Surface & Coatings Technology, v. 151-152, p. 505-509.
[2] Equbal M.I., Alam, P., Ohdar, R., Anand, K.A., Alam, M.S. (2016). Effect of Cooling Rate on the Microstructure and Mechanical Properties of Medium Carbon Steel: International Journal of Metallurgical Engineering, 5(2): 21-24
[3] Gunduz, S.& Capar, A. (2006). Influence of Forging and Cooling Rate on Microstructure and Properties of Medium Carbon Microalloy Forging Steel: Journal of Materials Science, 41, 561–564.
[4] Souza, E.G., Yamakami, W.J., Rodrigues, A.R., Menezes, M.Â., Gallego, J., Ventrella, V.A., Matsumoto, H. (2011). The Assessment of Hot Forging Batches Through Cooling Analysis, Journal of Machine and Forming Technologies, Volume 3, Number ½.
[5] Tash, M.M. (2015). Effect of Hot Forging Reduction Ratio and Heat Treatment on Hardness, Impact Toughness and Microstructure of Carbon and Low Alloy Steels, International Journal of Advanced Technology in Engineering and Science, Volume No.03, Issue No. 03, March.
[6] Skubisz, P. (2017). Controlled Austempering of Hammer Forgings Aimed at Pseudo Normalized Microstructure Directly after Deformation: METABK 56(3-4) 341-344
[7] Matlock, D. K., Krauss, G., Speer, J. G. (2001). Microstructures and Properties of Direct Cooled Micro-alloyForging Steels: Journal of Materials Processing Technology, Vol. 117, Issue 3, pp 324-328.
[8] Saunders N., Guo, Z., Li, X., Miodownik, A.P., Schillé, J.P. (2003). Using JMatPro to model materials properties and behavior. JOM, V.55, 60–65
[9] Saunders, N., Li, X., Miodownik, A.P., Schillé, J-Ph. (2001). Materials Design Approaches and Experiences, eds. J.-C. Zhao et al., (Warrendale, PA:TMS), 185
[10] Loder, D., Michelic, S.K., Bernhard, C. (2017). Acicular Ferrite Formation and Its Influencing Factors - A Review,:Journal of Materials Science Research Vol. 6, No. 1.
[11] Illescas, S., Fernández, J., Asensio, J., Sánchez-Soto, M., Guilemany, J.M. (2009). Study of the mechanical properties of low carbon content HSLA steels: Revista de Metalurgia, 45 (6) Noviembre-Diciembre, 424-431.
[12] Lee,H.J., Lee, H.W. (2015). Effect of Cr Content on Microstructure and Mechanical Properties of Low Carbon Steel Welds: International Journal of Electrochemical Science, 10, 8028 – 8040.
[13] Josefsson, B., Andrén. H.-O. (1988). Microstructure of Granular Bainite: Journal de Physique Colloques, 49 (C6), pp.C6-293-C6-298.
[14] Díaz-Fuentes, M., Iza-Mendia, A., & Gutiérrez, I. (2003). Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior: Metallurgical and Materials Transactions A, 34(11), 2505–2516.
[15] Mazancová, E., Jonšta, Z., Wyslych, P., Mazanec, K. (2005). Acicular Ferrite and Bainite Microstructure Properties and Comparison of Their Physical Metallurgy Response: Metal, 24. – 26. 5.
[16] Shao, Y., Liu, C., Yan, Z., Li, H., Liu, Y. (2018). Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A review: Journal of Materials Science & Technology, 34(5), 737-744.
[17] Shi, L., Yan, Z., Liu, Y., Yang, X., Qiao, Z., Ning, B., Li, H. (2014). Development of Ferrite/Bainite Bands and Study of Bainite Transformation Retardation in HSLA Steel during Continuous Cooling: Metals and Materials International, Volume 20, Issue 1, pp 19–25.
[18] Hui, W., Zhang, Y., Shao, C., Chen, S., Zhao, X., Dong, H., (2016). Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel: Journal of Materials Science & Technology, 32(6): 545-551.
[19] Esmailian, M., (2010). The Effect of Cooling Rate and Austenite Grain Size on the Austenite to Ferrite Transformation Temperature and Different Ferrite Morphologies in Microalloyed Steels: Iranian Journal of Materials Science & Engineering Vol. 7, Number 1.

##submission.downloads##

Megjelent

2019-06-12

Folyóirat szám

Rovat

Materials Science and Technology (Anyagtudomány és Technológia)